WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 541, January, 2012

Show all your work. You may quote named results. Each part is worth 10 points.

1. Let X be a sample of size 1 from the distribution with probability mass function (pmf)

$$f(x|\theta) = \frac{1}{\theta}, \ x = 1, 2, \dots, \theta, \ \theta \in \{1, 2, 3, \dots\}.$$

- (a) Show that the family of distributions is complete.
- (b) Find a UMVUE of θ .
- 2. Let X be a random variable whose pmf under H_0 and H_1 is given by

x	1	2	3	4	5	6	7
$f(x H_0)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$f(x H_1)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79

- (a) Find the most powerful test for H_0 versus H_1 with size $\alpha = 0.04$.
- (b) Compute the probability of Type II error.
- 3. The double exponential distribution (also known as the Laplace distribution) has density function

$$f(x) = \frac{\lambda}{2}e^{-\lambda|x|}, -\infty < x < \infty$$
, where $\lambda > 0$.

Let X_1, \ldots, X_n be a random sample from this distribution. Suppose it is desired to test $H_0: \lambda = \lambda_0$ versus $H_1: \lambda \neq \lambda_0$.

- (a) Derive a level α score test of H_0 versus H_1 .
- (b) Derive a level α Wald test of H_0 versus H_1 , based on the MLE as test statistic and using the observed information in computing its variance estimate. Comment on the differences between the score and Wald tests.
- 4. The guaranteed exponential distribution has density function $f(t) = \lambda e^{-\lambda(t-G)}$, t > G, where λ , G > 0. Let $T_{(j)}$, j = 1, ..., n be the order statistics from a random sample of size n.
 - (a) Show that $U = \sum_{i=2}^{n} T_{(i)}$ and $T_{(1)}$ are jointly sufficient for λ and G.
 - (b) Find the maximum likelihood estimates of λ and G.
 - (c) Show that $n(T_{(1)} G)$, and $(n j + 1)(T_{(j)} T_{(j-1)})$, j = 2, ..., n are iid exponential random variables with mean $1/\lambda$.
 - (d) Using the above results, show how to construct exact confidence intervals for λ and G using only the data and tables of the chi-square and F distributions.